Assessment of Cr(VI)-Induced Cytotoxicity and Genotoxicity Using High Content Analysis
نویسندگان
چکیده
Oral exposure to high concentrations of hexavalent chromium [Cr(VI)] induces intestinal redox changes, villus cytotoxicity, crypt hyperplasia, and intestinal tumors in mice. To assess the effects of Cr(VI) in a cell model relevant to the intestine, undifferentiated (proliferating) and differentiated (confluent) Caco-2 cells were treated with Cr(VI), hydrogen peroxide or rotenone for 2-24 hours. DNA damage was then assessed by nuclear staining intensity of 8-hydroxydeoxyguanosine (8-OHdG) and phosphorylated histone variant H2AX (γ-H2AX) measured by high content analysis methods. In undifferentiated Caco-2, all three chemicals increased 8-OHdG and γ-H2AX staining at cytotoxic concentrations, whereas only 8-OHdG was elevated at non-cytotoxic concentrations at 24 hr. Differentiated Caco-2 were more resistant to cytotoxicity and DNA damage than undifferentiated cells, and there were no changes in apoptotic markers p53 or annexin-V. However, Cr(VI) induced a dose-dependent translocation of the unfolded protein response transcription factor ATF6 into the nucleus. Micronucleus (MN) formation was assessed in CHO-K1 and A549 cell lines. Cr(VI) increased MN frequency in CHO-K1 only at highly cytotoxic concentrations. Relative to the positive control Mitomycin-C, Cr(VI) only slightly increased MN frequency in A549 at mildly cytotoxic concentrations. The results demonstrate that Cr(VI) genotoxicity correlates with cytotoxic concentrations, and that H2AX phosphorylation occurs at higher concentrations than oxidative DNA damage in proliferating Caco-2 cells. The findings suggest that in vitro genotoxicity of Cr(VI) is primarily oxidative in nature at low concentrations. Implications for in vivo intestinal toxicity of Cr(VI) will be discussed.
منابع مشابه
Research Paper ENUMERATION AND STRUCTURAL ASSESSMENT OF MURINE PERITONEAL MACROPHAGES EXPOSED TO CHROMIUM (VI): A PRELIMINARY STUDY
Heavy metals have significant importance in altering the immune response. Chromium is found in the environment commonly in trivalent, Cr (III), and hexavalent, Cr (VI), forms. The reduction of Cr (VI) to Cr (III) results in the formation of reactive intermediates (ROS) that contribute to the cytotoxicity and genotoxicity. In this study mice were treated with chromium (VI) oxide (24 mg /kg body ...
متن کاملAntioxidant Activity of Lawsonia inermis Extracts Inhibits Chromium(VI)-Induced Cellular and DNA Toxicity
Hexavalent chromium Cr(VI) is a very strong oxidant which consequently causes high cytotoxicity through oxidative stress. Prevention of Cr(VI)-induced cellular damage has been sought in this study in aqueous and methanolic extracts of Lawsonia inermis Linn. (Lythraceae), commonly known as Henna. The extracts showed significant (P < .05) potential in scavenging free radicals (DPPH(•) and ABTS(•+...
متن کاملHeme-oxygenase 1 gene expression is a marker for hexavalent chromium-induced stress and toxicity in human dermal fibroblasts.
Several adverse health effects, including irritant and allergic contact dermatitis, have been reported among workers who are occupationally exposed to chromium-containing compounds. Human dermal fibroblasts were used as an in vitro experimental model to study the potential mechanisms underlying hexavalent chromium [Cr(VI)]-induced dermal toxicity. Exposure of the fibroblasts to 5 microM Cr(VI) ...
متن کاملChromium in Drinking Water: Sources, Metabolism, and Cancer Risks
Drinking water supplies in many geographic areas contain chromium in the +3 and +6 oxidation states. Public health concerns are centered on the presence of hexavalent Cr that is classified as a known human carcinogen via inhalation. Cr(VI) has high environmental mobility and can originate from anthropogenic and natural sources. Acidic environments with high organic content promote the reduction...
متن کاملCarcinogenicity of chromium and chemoprevention: a brief update
Chromium has two main valence states: hexavalent chromium (Cr[VI]) and trivalent chromium (Cr[III]). Cr(VI), a well-established human carcinogen, can enter cells by way of a sulfate/phosphate anion-transport system, and then be reduced to lower-valence intermediates consisting of pentavalent chromium (Cr[V]), tetravalent chromium (Cr[IV]) or Cr(III) via cellular reductants. These intermediates ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012